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ABSTRACT 

We present a generalization of Slepian's lemma and Fernique's theorem. We 
show how these can be easily applied to give a new proof, with improved 
estimates, of Dvoretzky's theorem on the existence of "almost" spherical 
sections for arbitrary convex bodies in R ~, while avoiding the isoperimetric 
inequality. 

Introduction 

Let (~ ,F ,P)  be a probability space and {Xti} (1 < i < n, 1 =<] =< m) be a 

doubly indexed sequence of real valued centered Gaussian r.v.s, on (1), F, P). 
m X~ We are interested in comparing P(f') ~=1 U j=l [ tj > Ati]) and 

E(min, maxjXtj) with the respective analogous forms obtained from another 
sequence { Y~.j} of real valued centered Gaussian r.v.s. The main results in this 

direction are Theorems 1.1 and 1.4, which extend the well-known Slepian's 
lemma [8] and Fernique's Theorem [4] (see also [6]). 

We shall show that Theorem 1.4 can be applied, for example, to give a new 
proof of the famous Dvoretzky's theorem [2] on the existence of "almost" 
spherical sections for arbitrary convex bodies in R N, as well as some new 

estimates which are useful in the context of the study of the local structure of 
finite-dimensional Banach spaces. 

w Some inequalities for Gaussian processes 

The next theorem is an extension of Slepian's lemma [8], [6]. 
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THEOREM 1.1. Let  {X~,~} and {Yt~} (1 <= i < n, 1 < j < m )  be two sequences of 

real valued centered Gaussian r.v.s, satis[ying: 

(1) E ( X ~ )  = E(Y~,j) for all 1 <= i <= n, 1 <= j <= m, 

(2) E(XtjXtk)<= E(Y~jYtk)  [or all 1 <= i <= n, 1 <=j, k <= m, 

(3) E(X~,sXt~)>=E(Y~,jY~,k) [or all i #  l, l < i, l <=n, l <=j, k <=m. 

Then, 

P ,j > Ai,j > P ,j >= A~s 

[or all real scalars Ate. 

The proof of Theorem 1.1 will use the following simple lemma whose proof is 

omitted (A ~ denotes the complement of the set A).  

LEMMA 1.2. Let At j  (1 <= i < n, 1 < j <-_ m )  be subsets o [ a  given set A .  Let  

B~o = Ai., and B~.j = A ~.~ fq . . . fq A ~.j (7 At~+t [or all 1 < i <-_ n, 1 < j < m. Then, 

n m m--1  m--1  

N U A,,j = U " '"  U (BI ,hNB2,hN""  flB,~.). 
i = l  j = l  I1 =0 Jn = 0  

REMARK. Note that the sets BI,jI fq �9 �9 �9 f3 B.,j. are distinct for distinct vectors 

(jr . . . . .  j . ) .  

PROOF OF THEOREM 1.1. We shall adopt the following notation: A vector 

x = (xl . . . . .  x.m) in R ~m will also be denoted by 

X = ( X I A ,  �9 �9 � 9  X l . m ,  X 2 A ,  �9 �9 � 9  X 2 . , , , , . . . ,  X , ~ I ,  �9 �9 � 9  X , ~ m )  

where xl,j = Xo-l)m+j (1 < i __--_6 n, 1 _--_6 j __6-- m). 

Given any positive definite matrix F = (Y-,~), 1 =< a, /3 =< nm, let Z = (Z. )  be 

the centered Gaussian variable determined by F with density function 

g (z ;F )  = (2Ir)-"" ~R-" exp{i(x, z ) -  �89 x)}dx. 

It is very easy to see that if a # / 3  then Og/Oy~,o = O2g/Oz~Ozo. Notice that if 

a = (i - 1)m +], /3 = (l - 1)m + k (1 =< i, l = n, 1 =<], k __6 < m) then by our nota- 

tion 

"y.,~ = E ( Z~Z~ ) = E ( Z,,~Z,,E ). 

Let now Atj = [Z~, i = Ati]. We have by Lemma 1.2 and the remark which 
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fol lowed that  

Q ( Z ; F ) =  P 0 O Aid = 2 " ' '  
i : 1  1 :1  Jl =0 Jn =0 n,in 

" " " fs,.,, g(z)dz 

where  for  1 < i _-< n, 0 _-< j =< m - 1 

m - 1  

f(z)dz,,. �9 �9 ' dzi.zdz,., 

for any function f(zLl,..., z,,,) and 

�9 , f Ai, 1 Ai d | fBidf(z) dzildzi2"~ 
m - ) - 1  

f ( z )dZi ,  m " " dz i ,2dz i ,1 .  

By differentiat ing Q with respect  to 3'-,~ we obta in  that  

L a o  t z ; r ) =  Y. " "'" ~  dz. 

W e  shall c o m p u t e  fBL;,''" fs.,i.(O2g(z)/dZ.OZo)d z for  all a # / 3 .  The re  are two 

possibilities: 

(a) a = ( i - 1 ) m + k , / 3 = ( i - 1 ) m + l ,  where  l<=k<l<=m,l<=i<=n, 
(b) a = (i - 1)m + k , /3  = (io - 1)m + l, where  1 _-< k, l _-< m, 1 _-< i < io --< n. 

In  case (a), wi thout  loss of genera l i ty  we take  z .  = zl, .-~ and z~ = z l , .  (i.e., 

i= l ,k = m - 1 ,  / = m ) , t h e n  

J8 dzl 1 " ' "  dZ l , , n  
02g(z)  

Lh cg Z l , m - l  O Z l,,,, " 

-|  J - |  JAl,i~+l . J CgZl,m-1OZ].,,, 

m - j l -  1 

d Z l , m  �9 " " d z l , 1  

and we see that  this is equal  to zero  if jl < m - 1 because  the first integral  with 

respec t  to z l , .  is 

f~| dzl,. = 0 .  
02g(z) 

c9z1.,._10Zl,m 
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But when ja = m - 1, then 

B dz l.l " " dz l.m 
02g(z) 

Ij I O Z l , m - l O Z l , m  

. . . .  d Z I , m - - 2 " ~  . 

Hence, it follows that in case (a), 0QI0%,~ <= O. 

In case (b), without loss of generality we take zo = z~.m and z~ = z~,,~. Then, 

when either/1 or /~  is smaller than m - 1 ,  we obtain as above that 

/a IB 02g(z) d z ' ~ ' " d z " m d z 2 " ' " d z 2 m = O "  
2j 2 1d I OZl,mOZ2,ra " 

However, if jl = h = m - 1, then 

..... f. .... az,.r, aze,,o2g(z) dzl"""dz"mdzza'"dz2m 

--f?' f? .... f ,i. f)" f S. . . . .  az,,.aZe,r,a2g(z) dz2,,,,"'dZ,,l 

: f?;,, o f...~: .... f/~.l o. ~ f?~ .... g(z) ]z/::S~/:m m d z 2 , m - - l ~ 1 7 6 1 7 6 1 7 6  

=>0. 

Hence, it follows that in case (b), dO/dT,~,a >- O. 

Let now Fx and Fe be the covariance matrices of 

X = (XI,, . . . . .  X~.m,...,X,~ . . . .  ,X,~m) and Y = (Y,.~,..., Y, . . . . . . .  Y,~ . . . .  , Y,,m). 

By a standard approximation procedure we may assume that Fx and Fy are both 

positive definite. 

For 0_- < 0 _-< 1, let F (0 )=  OFx + ( 1 -  0)Fy, and let Fx = (ra,~) and Fy = (s.,~) 

(1 <= a, fl <-_ nm). By assumption (1) of the theorem ra,~ = s~,~ for all a, therefore 

dQ t Z .  d o "  ' r t o ) )  = Z ( z ;  r)[~, ,~(~o.~ - so.~). 

By assumptions (2) and (3) of the theorem r~.~ _-< s.,~ in case (a), and r~,~ _-> s.,~ in 

case (b), hence dQ/dO>=O. Therefore, Q(Z;F(1))>=Q(Z;F(O)),  i.e., 

Q (X; Fx) --> Q (Y; Fv), completing the proof. [] 

COROLLARY 1.3. Let gu (1 <- i <= n, 1 <- / <--_ m)  be increasing functions defined 
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on ( -~,oo) .  Then, under the assumptions of Theorem 1.1 

E ( m i n  max g,. i(X~,))>=E(min max g,. i(Yi. , ))  . 
\ l~--i~--n l<=j~--m \ l~i<--n l~--j<=m 

PROOF. Le t  

X = min max g~.j (X~.i), Y = min max g,.j (Y~.i), 
i I i i 

and define g?.~(A ) on ( - oo, oo) by setting g,-~(A ) = sup{t; gt~ (t) =< A }. Then, 

n m n m 

[x_->x]= tq U N U 
i = i  i = I  i=1 j=1 

therefore, by Theorem 1.1, 

( " " ;,l()1) P(X>=A) = P  ~ U [X~.,>=g A 
i = l  ] = 1  

=> P ,J ----> g~.i ( 
i = 1  j = l  

= P ( Y > A )  = 

from whence it follows that E ( X )  >-_- E ( Y ) .  [] 

Theorem 1.4 which follows is an extension of Fernique's theorem [4], and will 

prove to be the essential ingredient in developing the results of w 

THEOREM 1.4. Let Xi.~ and Y~.j (1 _-< i _- n, 1 <=j <= m)  be real valued centered 
Gaussian r.v.s which satisfy the following conditions: 

(i) E ([ X~., - X~k 12) =< E (J Y~,, - Y~,k 12) for all 1 < i <- n, 1 <= j, k <= m, 
(ii) E(IX,. ~ - X~,~ 12)--_ > E(I Y~.i - Yt.k 12) for all iF  l, 1 <-_ i, l <= n, 1 <=j, k <= m. 

Then, 

E ( m i n  max X , ,~=<E(min  max Y,,,). 
\ I~_i~n l~_j~m " ] l ~ i ~ n  l ~ j ~ m  

PROOF. We shall continue to use the notation of Theorem 1.1, namely, if 

a = (i - 1)m + ] for 1 _-< i _-< n, 1 _-< ] _-< m, the a - th  coordinate x~ of a vector x in 

R '~  is also denoted by xl.i. Thus, X~ is identified with X~,~. 

For every 1 <-_ a, [3 <-_ nm, let ra,~ = E (X~X~), s~.~ = E (Ya Y~ ). For 0 _-< 0 _-< 1, 

define p,.~(19)= 19r~.~ + ( 1 -  19)s~.a. Then the matrix F(19)= (p~.a~))~.o=t is the 

covariance matrix of 
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X(O)  ~- (X1,1(0)  . . . . .  Xl,m (0 ) ,  X 2 , , ( 0 ) , , , , ,  X2,m ( 0 )  . . . .  , Xn, l ( 0 )  . . . . .  Xct, ra ( 0 ) )  

where X~a(O)=O~I2X~,j+(1-O)~2ytj. We may assume, of course, that the 
sequence { X J  is independent of the sequence { Yt~} so that E(Xt~Ytk) = 0 for all 
1 _-< i, l _-< n, 1 = L k _-< m. Also, by standard approximation procedure we may 
also assume that the matrices F(0) and F(1) are both positive definite, and 
therefore F(0) is positive definite for all 0. Let 

h(O) = E ( min max Xi., (0)) 
\ l~i~n l~j~rn 

and let g(O) be the density function of X(O). We shall prove that conditions (i) 
and (ii) of the theorem imply that h'(O)<= 0 for all 0 =< 0 =< 1; this will show that 
h(1)= < h(O). 

We will list the following well-known identities: 

(1) g0 (z) = (27r)-'" fR-- exp{i(x, z) - �89 x)}dx, 

(2) h(o)= f... (min max x,.j) J 

(3) h'(O,= fR- ( min max x,.,) 0 ~ dx, 

(4) og~ -(2~r)-"" L,- [l t2 a~--1, Y,~Yo dP"~t~o(O)]exp{i(x,y)-�89 

9̀2 ge (x) 
(2ar)-"" f Y-Yo exp{i(x, y)-�89 y)}dy; `gx,,̀ gxa jR.- (5) 

therefore 

(6) 

(7) 

1 "~ apo,~(0) a2g~(x) a ~ ( x ) = ~  ~, =1 " ' 
dO dO `gx,,`gx~ 

1 ~ dp~tOO(O) fa.- ( min max x,,,) `92g~ (x) dx h'( O ) = ~ ,,.~-1 `gx,,̀ gx~ 

= ~ ~ (r,.0 - s,.~) min max x,.~ �9 =l .- ~ i `gx,,̀ gx a 

Denote the integral in (7) by L.~ (note that we mixed the two notations for the 
coordinates of x in the integrand of L.,). We shall compute I~.~ for all values of 
a,/3, 1 <= or, [3 < rim. It suffices to consider three special cases: (a) a =/3 = 1, 
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(b) a = 1,/3 = 2, and (c) a = 1,/3 = m + 1, f rom which L,o can be d e t e r m i n e d  for  

all t~, /3. 

W e  shall first s implify I~.~ for  all /3. 

Computation o[ I,,~ : 

deno te  

dx 
dx~ 

and 

dx 
dx~dxo 

Let /3  = ( i o -  1)m + jo where  1 -<_ io _<- n, 1 _-< jo <= m. Le t  us 

= dx ldxz" ' dX~- ldX~+l""dx .m ,  

~ =  d X l " " d x ~ - l d x ~ + l " " d x z - l d x ~ + l " " d x . z  

for  a # / 3 .  
For  all l_ -< i -<n ,  l ~ - j ~ m ,  let 

u , = m i n  maxx, , i  and u i j = m a x  xik. 
l<~l~n l ' < ] ~ m  l~k<=m ' 

~# i  k # ]  

T h e n  

min max  x,,j = min{max(x l , , ,  u,,,), ul}. 
l~i<=n l ~ i < m  

There  are six cases to consider:  

(a) u~ <= u~.l -<- xl.~, then  ul = mini maxix~a ; 

(b) U~.l =< u~ = xl,~, then  ul = mini maxjx~,j ; 
(c) u~ _-__ x~,~ _-< ul,~, then u~ = mini max~x~,j ; 

(d) x~,~ =< u~ =< U~,l, then  ul = mini maxjx~a ; 

(e) U~,m =< x1,1 =< u~, then  x~,~ = mini maxix~,j ; 

(f) x~,~ _<- U~,l =< urn, then  u~,l = mini maxjx~.j. 

Le t  /3 = ( i o - 1 ) m  +jo,  then integrat ing over  the domains  ( a ) +  (c )+  (d) we 

obta in  

min max  xi,j Ox~.,Ox~,~o a)+(c)+(d) l_--<ul,1 

= 0  

Ul Oxl.t,gx~,,i, dxl,1 

hence  
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I1,# = ~(b)+(e)+(f) 

= Ut t~Xl ]3Xio,jo " 3Xl,10Xlo,Jo I , I '~WI , d IZl,l 

" ~  U l , 1  = CgXl,tOXio,io dXl,1 

= -  ul OXiojo dxLl 1,1<:141 , XI, I  =141 

(8) 
+ f..:., r [U, ax,o,ol.,,:. ' a~~ I - -  U l , I  ~ X i o , j  ~ X l , l = U l , |  

f I ,x + UI.! tgXioio dXl ] i . l < U l  . l l . i  =Ul .1  . 

"' Ogo(x) dx,,, dx,,1 m~-ul ],1 eqX io,io 

Computation of I,.,: T a k e  in ( 8 ) / 3  = 1, t h e n  io = / o  = 1, so  

w h e r e  

If ' 09o dxla] dx 
- ,., ,gX,o.Jo d x , . ,  

= B - A  

A= f. go(x)l.,.,=., dx f. d x ,  1 B =  go(x) [=, := .... dx 
i , l~ -Ul  , I , I< :Ul  , 

T o  c o m p u t e  B, de f ine  fo r  e a c h  k, 2 _-< k _-< m, 

Bk = {X E R ' " "  Xl.k > U~,)k}, w h e r e  u (') - = j , k -  m a x  xtl ,  
i~l<<_m 

l ~ j , k  

t h e n  o n  B k ,  u1,1 = Xt,k, a n d  the  c o n d i t i o n  u t ,  < u~ i m p l i e s  o n  Bk ,  , ,o)  < < �9 ~ U l . k ~ X l , k  = Ut~ 

h e n c e  

f B i ,,) < 
k = 2  JI4 [ ,k = u  1 \ J U l ,  k 

N o w  we  c o m p u t e  A .  F o r  all  1 __6 < i, 1 N  n, i #  1, le t  

u i'~ = min  m a x  Xr, k. 
l~r~--n k 

r # i , I  

L ,  = _ go(x)l.,.,=.,d_~., ~- go(x)l~,.,=.,., dx 
. "d-'~,., 

I , I < U l  �9 I , I ~ U l  
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Let 

d e f  I , I  / 
C~= x~R-- ' ,maxx~. , ,<=min max. x,;. = u , ! = 2 , 3 , . . . ,  

j 2<=r<=n ! 
r # l  

n 

Then R - -  = U;-2 Cz and distinct C~'s have disjoint interiors. Moreover, each Ct 

is also the union of sets which have pairwise disjoint interiors, namely, 
m 

Ci = I..J~=l Bi.k where 

Btk = G 1 3 { x E R " " "  > } �9 . x , ,  = max x,.; . 
�9 i<=j<=nz 

Since R"" [3" " = ,=2 I,..Jk=, Bt.~ we obtain 

A = ~ =  2 go(x) l~, . ,=. ,dx,  �9 
k = l  i . tdq{uH<--ul} 

But on B~.k 13 {u~,, < Ul} we have ut = x~.k, hence x~,k >- u~A, also 

d e f  

x~k_->maxxt.; = utk and xtk < m i n  m a x x , , ; = u  
�9 i<=j<_m �9 , 2~r<<n j 

j # k  r # l  

Thus we have on B,,k n { u l : =  < u,} that max{u,, , ,ut ,  k }<x t ,  k <= u '"  (and this 

inequality in fact defines the set Bt,~ 13 {u~,, <= u,}), therefore denoting max{a, b} 
by a v b we obtain 

A = go(x)l~' . '=x' .:ed dx, ,dx, .k  " 
1 = 2  k = l  13 v tll, k ~ u  I ' /  i , i  v It/, k 

and from these identities we obtain 

~' d~) dx 
' . . dxL~dxLk 

- ,=2k=,  , , v . , : . ' ;  b ( x ) l x , . ,=x , . : ed  d x , , d x ,  k " 
�9 , 1,1 u ttl, k , , 

In the same way we can determine I,,.,, for each 1 <= a <-_ n m ;  setting 

a = ( i - 1 ) m  + j  (<-_i<=n, l_-<j=< m), we obtain 

I . . =  dx 
�9 k=, ,0<. 'ob(x)':~":~d dxiflxi, 

k#j 

(9) 
- ~  2 f.,,~.,:.,., (f.,i,"i.,., go(x)[. , . ,=.:.:r dx 

k=, . . dxi.idxt.k " 
Igi 
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C o m p u t a t i o n  o f  I1.2: If we t ake  in (8) io = 1, jo = 2 we get  tha t  for  a = 1,/3 = 2 

f,, (f~ Ogo(X)dx,.,)dx,. ~ d x  
IL2 = - cgxL2 d x L , d x L z  " 

i . l ' r  1,1 

N o w ,  

, o) ul,, = m a x  Xl,i = Xl 2 v ~ 1,2. 2<=j<m 

T h e r e  a re  two cases  to c o n s i d e r  he re :  

(1) u~'] _-< x,.2. T h e n  ul.~ --< u~ impl i e s  x,.2 = u~, a n d  the  c o n d i t i o n  u,.~ ~ x,.~ _-< ul 

impl i e s  xl.2 < x~., < ul.  T h a t  is: u] 1] = xL2 -<- x1.1 < ul .  

(2) u] ']  > xl.2. T h e n  ul.~ < u~ impl i e s  u ] ~  ul ,  a n d  the  c o n d i t i o n  uLl <= xLl  <= ul 

imp l i e s  u~l.)2 <= x , . ,  <-_ u , .  T h a t  is: xl.2 <-_ u~'~ <= x, . l  <-_ u , .  

T h e r e f o r e ,  c h a n g i n g  the  o r d e r  of i n t e g r a t i o n  in I12 we o b t a i n  

11,2 = ~ <=', I'~ ") tgXl.: " ' 
�9 , 1,2 

+ dx~.2dx,,i  
~'~ ~ Ox~.2 dx l . ldx l .2  

---f (f/ )l ,) 
,m< ~,1 g o ( x  .... =~,.z=r dxl ldxi,2 

1.2 = U l 1.2 

Thi s  impl i e s  tha t  for  a n y  1 < a , / 3  _-< rim, if a = (i - 1)m + j a n d / 3  = (i - 1)m + k, 

w h e r e  1 < i - n a n d  1 <_-j~ k =< m, t h e n  

(10) L.o = -  , ,< ~. go(x)l~,.;=~,.~=~d d x i i d x i ,  k �9 
J Uj ,  k = U i i,& 

C o m p u t a t i o n  o f  I~.m+l: By e q u a t i o n  (8) 

L (L i l m +  I ~ .  -- OgO(X)  d X l l t  d x  
' ,.,~,, ,., ax2.~ ' / dx,.3 " 

ul = m i n { u ~ ' 2 ,  max{x2.~,u~. l}} ,  t h e r e fo r e  the re  a re  six cases to Reca l l  tha t  

c o n s i d e r  he re :  

(a) u"2 < u21 "~ x21, he re  ul = u ~.2. 

(b) u ~2< xz., < u2.1, he re  ul = u I'2" 

(c) x2 ~ < u 1.2 =< u21, he re  ul = u ~2. 
1 2 ~  1 , 2 .  

(d) u2.1<= u ' = x2.1, he re  ul = u , 

(e)  u2.~ <= x2.1 <= u 1"2, he re  ul = x2.1; 

(f) x2.~ <= u2.~ < u ''2, h e r e  u~ = u2.1. 
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We obtain therefore  

I I , m + l  = - -  ful.l~ul.2<u2.1 

-- fulf<ul.2~u2,1 

., L, OX2a " ' / d x L l d x 2 a  

1.2 1.1 O X 2 , 1  ' " d x L l d x 2 a  

�9 . OX2.1 " ' d x L ~ d x 2 ,  

-- f,,l.l,,u2.1<=.l.2 

- -  f U I , I  V ~2 ,1~U 1, 2 

- -  f , , 1 ,1<= . z , l<= , , l � 9  z 

(f~ fu . . . .  OgO(X)dxlldX211 dx 
.2 ~,, ox2a  " ' / d X l . l d X 2 a  

a 1,tax2al 
,.,v.2., ,., ox2.~ / d x l a d X 2 . 1  

- .  , OXz,1 " ' / dXl,ldX?.,1 " 

Changing  the order  of integrat ion inside the first three integrals, we see that their 

sum is zero since 

Hence  

f 7  a g o ( x )  d x 2 1  = 0 .  
0X2,1  

I , , . + ,  = go(x)[2.,=~, d x , . ,  d x ,  ldX21 
, l 1,2 

I,lVU2,1 ~ u l ' 2  1,1 , �9 

�9 . . j . . aX2.1 ' ' 

+ ax2, d x ,  ,dx2.1 I,I v u2,1 1,1 �9 

....  x,i) 
�9 , . d x l . l d x 2 . t  " 

We have to consider the cases u2., =< u,.1 and uL, <-- u2.,. These  cases lead to the 

following computa t ion :  

I , . , + ,  = g o ( x ) l  ....  =~ ' .~dx , . ,  d x ,  t d x 2 1  
' | 1~u2"  ~ 1 , 2  I , t  �9 ' 

(I.i 
�9 . . ' d x l a d X 2 . 1  
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~ :U2lOU ~ { f 2  ,g.,x,J~2 - 2 g.,x,l-~u2 , dx,,1 

2., "" dxl.ldx2,1 

-I.~,.=.,o.,.~ If.71.7 ~ ~x~,~., �9 O X 2 :  " 

+ tgo(x)l.2.,=.,.=-go(x)l.=.,=.,,,ldx,., dx 
. . . . .  d x l a d x 2 . 1  

�9 . , dxl,ldx2,1 

f~ ~7  ~., dxladx2a 

�9 . dxladxza  

�9 . . d X l , l d X 2 , t  " 

From this we obtain for every l _ - a ,  /3 <-rim, if a = ( i - 1 ) m  + ]  and /3 = 
( l - 1 ) m  + k, where  l <= i ~ l <-_ n, 1<-], k <-_ m,  that  

~. (L .... 0 (11) I .# = go(x ) l x , : x , .=~a  dx  
�9 dx, idx~ k " i,jVUl, k~U i't i.jVU~k �9 , 

From equat ion  (7) 

d.__h_h 1 
dO 2 = " �9 

"~- 2 ' = 1 1 ~  I~j.k"araE (r ( i - l ' ra+j , l i -1 )m+k--S( i -1)m+J. ( i - l )m+k)I ( i - I )m+J. ( i - I )  m+lc 

i # k  

1 " 
+ ~ ,~.~,. ~. ,.~=1(r"-t)'+i.('-'"~+'- s"-t"+w-')"+')l,'-')"*+w-t) "~+" 

i:l 

= (I) + (II) +(III) + (IV) 

where 

(I) = 2,=11 ,=1 (ro-,) , .+w-,)*+/- so-i,,~+w-um+i) = ,.~"'~ ~ ,.~ g '  ].,,,=.,.=~d dx,,,dx,.kdx , 
t # i  
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(II) = - ~ (ro-,).+s,o-,),.+j- S ( i - , ) m + j . ( i - l ) m + j )  
i=1 i=1 

x go [x,.,=x,,k=r dx~jdxtk ' I=1 k=l i, k v u i . j ~ u  i'l l.k VUid �9 . 

(IIl)= -~ ,=<,.~_<, (ro-,),~+,.o-,),~+k- so-,),~+,.,-1),~+k) 
j:k 

x go x,.~ =x,. =e d dx 
"~< "' dx~.idxi.k ' j,k = ul j.k 

1 m 

( IV)=~,~ , .  ~n/.~=,(r(i-,)-+i..-,)-+k--Su-,)-+,..-,).+k) 

. . . . . .  dx~.flxtk " 

But we can write (I) as 

1 n 
(I) = ~ .,~ ,<j,~<m (r,,-,)m~i,(H).~4j+r(,-,),.~k,(i-,)m+k--S(,-,,.~+j.(,-,)m+i 

j ~ k  

- So-l)m+k.O-I)m+k) go I~, . : . , , :ed dxijdxi, k 7:-u, I:'~ 

and since the respective integrals that appear  in the sums (I) and (III) are the 

same and non-negat ive,  because go => 0, it follows that ( I )+  (III) is < 0 if the 

coefficients are all < 0, that is, if for  all 1 < i -< n. and 1 < j :  k = m we have 

0 ~  r(i l ) m + j , ( i - l ) m + j ~ l - r ( i  I ) r a + k , ( i - l ) m + k - - S ( i - 1 ) m + j , ( i  1 ) m + j - - S ( i  I ) m + k , ( i - 1 ) r a + k  

-- 2t( i-I)m+j,( i-1)m+k-I-  2S( i -1)m+j,( i - l )m+k,  

which is precisely inequali ty (i) of the assumption of the theorem.  
Similarly, we can write (II) as 

m 
( I I )  = - ],l<=i~,<=~=(t(il)m+J'(i-l)m+J'~-r(l-1)m+k(l-l)m+k--S(i-1)m+j'(i-1)m+Jn j ,  , 

�9 . . . dxi,flx,,k " 

(II) therefore contains the same integrals as (IV), and since go => O, (II) + (IV) will 
be non-posi t ive if all the respective coefficients are _---0, that  is. if for  all 

l < = i ~ l < _ n ,  l < = j , k < m  
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0 :> -- ro-om+L(i-Om+/- r(t-Om+k.(l-Dm+k "4- S(i-l)ra+j.(i-l)ra+l "I- S(I-l)ra+k,(l-1)m+k 

"~- 2r(i-I)m+L(I-l)m+k- 2S(i-|)m+i,(l-l)m+k, 

which is exactly assumption (ii) of the theorem. Hence dh/dO <0 for all O, 

implying in particular that h (O) -  > _ h(1), that is 

E (mini maxj Xi.j) _- < E (min max Y~,j) . [] 

REMARK 1.5. Fernique's theorem follows as a corollary of Theorem 1.4, 

because this is exactly the case when n = 1, so (ii) of Theorem 1.4 does not 

appear, and thus from (i) alone (for n = 1) it follows that 

E(maxX, . i )<E(max  Yl,,) . 

w Applications and Dvoretzky's theorem 

Let {g~,j} (1 < i < n, 1 < j  _-< m), {h~}~ and {g~}~" always denote independent sets 

of orthonormal Gaussian r.v.s. 

THEOREM 2.1. Let 

~' = {e = (e,, e_, . . . .  , e,)} C R" 

be compact subsets of points, and let 

x~,. = l i t 112 ~ o,g, + o,, ~, e,h, 
i=l i=1 

and 

T h e n  

E(minmax  ) E( 
\ tE~g OEO 

PROOF. 

and 

and 0 ={0 =(0, ,02 . . . . .  0,.)} C R "  

(where 0o = max{l[ 0112; 0 ~ O}) 

i=I i=1 

minmax   )  (maxmax , 

For arbitrary e, g in ~', and 0, 0 in | we have that 

~<1Y..- Y,~ I~): 2 E (~,0,- ~,0,) 2 
i=l /=l  

-- II ~ 112,110 IIN + I1,~ IINII ~ IIN- 2(e, g)(o, 0) 
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E ( l X ~ , o  - x , ,o  12)= ~ (lit 112o, - II ~ 112~,)~ + og ~ (~,- ~,)2 
i=1 i=1 

= II ~ II~ll 0 1122 + II ~ 1122116 1122- 211 ~ I1~11 ~ 112(0, ~) 

+ 0g[ II ~ I1~ + II ~ I1~ - 2(~, O],  

hence 

(2.1) 

if and only if 

E(I X~,o -X~,~ [2)~ E([ Y~,o - Y~,~ 12) 

(2.2) og[ll~ll~+ll~ll~-2(t,O]-2(o,6)[ll~l1211~l12-(~,Ol>=O. 
But since l i t  11211~ 1[2-(~, g)----0 the 1.h.s. of (2.2)is minimized when (0, 0 ) =  0g, 
and then (2.2) is reduced to the inequality 

og[ll e II~ + If ~ II~ - 211 e 11211 ~ 1121 => 0 

which is obviously true for all e, ~ in ~. 

By Fernique's theorem, or Remark 1.5, it follows that 

E ( max max X~.o) >= E ( max max YE.o) . 
\ e ~  o ~ 0  \ EEt~ 0 ~ 0  

It remains to show that 

E(minmaxX~.o )<E(minmax  Y~.o) ; 
\ e E ~  OEO e ~  OEO 

this will follow from Theorem 1.4 if, in addition to inequality (2.1), we shall also 
show that 

E(IXE.o-X~.~[2)<=E(]YE.o-Y~,~] 2) f o r a l l s ~ g ' a n d 0 , 0 E O .  

But, in fact, we have that 

E(IXE.o - X~,12)=ll~ll~ ~ (O,-6,)~= E(IY,.o - Y~.~ r) 
i=l  

and this completes the proof. [] 

We now illustrate the preceding theorem by an example: 

EXAMPLE. Let ~ consist of all 2" vectors of the form ( -  1 , . . . ,  - 1) in R", and 

0 consist of all 2" vectors of the form (+- 1 . . . . .  - 1) in R".  Let X,.o and Y,.o be 

as in Theorem 2.1. Then 0o = V~m and lie 112--xF~ for all e E ~, so 
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m t l  

= ~ ( m V n n + n V m m ) = ~ / ~ n m ( l + ~ / n )  

and 

m n 

(mi ) ( V ~ n j ~ - V ~ m ~ l h , [ ) =  E n max X~,o = E [g~ [ i=l 

therefore, by Theorem 2.1 

and 

~/2~n m (1 -  ~/m---n), 

( )>x2~m(1- ~f~---) 
Of course, it is also obvious that for all e E 

E ( m ) n ~ [ ~ e , g , . ,  ) < E ( , ~ [ ~ e , g , . ,  ) = ~ f ~  rim. 

Using Corollary 1.3 and slightly modifying X~.o of Theorem 2.1, we obtain a 
general useful inequality. 

THrO~EM 2.3. Let ~ E R", @ C R m be finite sets and 

j = l  i = 1  i = l  j = l  

z~, ,  = Y~,o +lie 112110112g (e ~ ,  0~O), 

where g is a standard normalized Gaussian variable independent of the g~.j. 
If f~,o (t) (e E ~, 0 E 0, - oo < t < oo) are increasing functions, then 

<-E(maxf~.o(Z~,o)) 
\ e,O 

: ,0 ,0 ~ 
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PROOF. We shall first verify the following inequalities: 

(I) E(X,.oX,.o) = E(Z,.oZ,.~) for all e E ~, 0, 0 E O, 

(II) E(X~.oX~.~) <= E(Z~.oZ~) for all e, ~ E ~, 0, 0 E O. 

Indeed, both sides of (I) are equal to II e II~(0, 0) + II ~ flgll 011211 ~ 112, and it is easy to 
see that 

E ( Z e . o Z ~ )  - E (X~oX~) - II ~ II~ II ~ tl2 II o 112 II ~ 112 - II 0112 II ~ ll2(~, a) 

- (o, 0)[11 ~ tl211~ I1~ - (~, ~)1 

but since (0, 0) ~ II 0112 II ~ I1~ and II ~ 112 II ~ 112 ~ (~, ~), the above expression is greater 
than or equal to 

It ~ 1t2 It o 112 II ~ 112 tl ~ 112 - II o 112 II ~ I1:(~, ~) - 1t o 112 II ~ 112[ II ~ It~ II ~ 1t2 - (~, ~)1 = o. 

The validity of inequalities (I) and (II) implies that inequalities (1)-(3) of 

Theorem 1.1 are valid as well, where Xe, o replaces Y~,i and Z~,o replaces X~, i, 

hence by Corollary 1.3 it follows that 

E(minmaxf~,o(Z~.o))>=E(minmaxf~,o(X~,o)) . 

The fact that E(X2~,o)= E(Y~,o) and E(X~,oX~,~)<= E(Z~.oZ~,~) for all e, ~ E ~, 

0, 0 ~ O, implies by Slepian's lemma, which is a consequence of Theorem 1.1, 

that 

e,o e,o 

for all real scalars h~,o, and as in Corollary 1.3 this proves that 

E(max[~'~176176 ~,o [] 

REMARK 1. If we replace [10112 by 0o in the definitions of X~,o and Z,,o, then 
the inequality of Theorem 2.3 remains the same. 

REMARK 2. We note also that by varying the sets ~ and O in Theorems 2.1 

and 2.2, many other interesting inequalities can be formed. One may take, for 

example, 

= {e E R" ;  It e I1~ -- 1} and O = {(y*(y0 . . . . .  y*(y, ) ) ;  y* E Y*, II y*ll = 1/ 

where {yj}~' is a fixed set of vectors in a Banach space Y; we'll show that by using 

Theorem 2.1 this leads to a proof of Dvoretzky's theorem. 
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The right-hand side of the inequality in Theorem 2.1 refines an inequality of 
Chevet [1], in that it replaces the constant X/2 by 1, namely: 

COROLLARY 2.4. Let {x~}~'~l C X and {yj}~'=~ C Y be sets of points in given 
Banach spaces X and Y, respectively. Let G = s 2j%~ gi,jx~ ~ yj be an element in 
X ~ Y, or equivalently an operator from X* to Y. Denote 

e2({x'}r)=max{H~t'x'll;~t2=l}',=l ,=1 

PROOF. 

Then, 

and 

We apply Theorem 2.1 with 

= {(x*(x,)  . . . . .  x*(x . ) ) ;  IIx*}l-- 1, x* ~ x * }  

Then obviously 

and 

0 = {(y*(y,) . . . . .  y*(yr,)); IlY*]I = 1, y* ~ Y*}. 

E \(max,~" max,~o Y~,o) = E(IIGIIx~r 

E \(max,~, maxo~o X"~ =e2({x'}7)E (11,=1 ~ &YJI[ ) + e2({yj}j~l)E ({I ~=1 ~ gix~[I)" [] 

THEOREM 2.5. Let Y be a Banach space, {y,},Z2 C Y, and let {e,}~%, be the unit 
vector basis o[ l~. Let G (to) = Y,7=1 s &i (to)e, • yj be a random operator [rom l"z 
to Y. Then 

(2.3) 

I Il,  II ) " : ) E &yj -to.e~({yjh)--E minll~(x)ll ~E(II~II) 
\ IIx Ih = I 

where 

to, = V'2F (n 2----~1) / F (2) (to. <-_ V~n and to.n -l/~ ) 1). 
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PROOF. A simple computation shows that E ( ~ g ~ ) =  oJ. and hence 

The right-hand side inequality follows immediately from Corollary 2.4 by 

setting X = l~ and x, = e,, so e2({x,}7) = 1 and E(IIZ~ g,xl II) = E(X/-~=~ g~)= ton. 

Let ~ ={e E l~; Ile]12= 1} and O = {(y*(yl) , . . . ,y*(y,)) ;  [ly*lI= 1, y* E Y*}. 
Then obviously in the notation of Theorem 2.1, 0o = ez({yj}~'), 

max gjOj = gjy j ,  min e,h~ = - h ~ , 
8EO e ~ l g  iffil i=1 i=1 

thus we obtain that 

and 

E (rain max ~.,)--E~min II~x>ll) 
ee~ oeo  \ Ilxl12= 1 

"(minmaxX-') , ,  

so the left-hand side of (2.3) follows from Theorem 2.1. 

COROLLARY 2.6. In the notation of  Theorem 2.5, i f  

(ll  tl) (2.4) E gjyj -,a.e2({yj}j%) > 0 

then Y contains an n-d imens ional  subspace Y .  such that 

d ( Y . , l ~ )  <- _ 

( II) 
m 

PROOF. For each ~o ~ 1~, let 

[] 

g ( (o )=max l IG(~o )xH=I IG( (o ) ) l  and f(~o)= h=, li.~=, rain ]] G(~o)x II. 
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Obviously, 0 < f(to)_<- g(to) and since 

0 < E  gJYJ -to.e2({YJ}J=,)=E(f)<=E(g) <=E giY~ +to.e2({yj},) 

it follows that there exists tOo ~ 1) for which 

E g,y, - tO .~ ( ly ,  Ir)  
f ( tOo)l g( too) >= 

It follows now from the inequality 

fttoo)llx t1~ <--II Gttoo)X II--< g(tOo)llx I1~ (x e l;) 

that if Y, = span{G(tOo)X ; x ~ l~}, then d(Y. ,  i;) < g(tOo)lf(tOo). 

It is well known that 

( (  ' ' / "  E ~lg~l P) )=cp(m)m lIP 
j= l  

and 

moreover, 

where cp (m) ~ cp ( > 0) for all 0 < p < ~, 

[] 

E ( max l gj l) = c~(m ) Vlog m where c| ~ c| > 0), 

COROLLARY 2.7. For any 1 <= p <= 0% and integers n < m, if a (p, n, m) > 1 
then l~ contains an n-dimensional subspace Yp such that d( Yp, l~) < b(p, n, m ), 
where 

(i) a(p, n, m) = c~(m)mn -1, 

b(p,n,m)=(cp(m)+ ~ / - ~ ) / ( c p ( m ) - ~ / - ~ )  if 1<p_-<2; 

(ii) a(p, n, m) = c2p(m )m 2/Pn ~, 

b(p, n, m) = (cp (m) + n'2m-~/P)/(cp (m) - n'/2m-'P) if 2 < p < o% 

(iii) a(p, n, m) = c~(m)(log m)n -~, 

b(p, n, m) = (c~(m) IV~og m+ V~n)/(c~(m)V~og m -  V~n) if p = oo. 
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i n  PROOF. Let {yj}~%~ be the unit vector basis of lp. Then 

E g~y~ = E I g~ I p = cp (m)m '`p if 1 < p < % 
j=l 

and 

In addition 

i f p  =o0. 

I m ,,p-,,2, if 1 N p N 2, 
82({yi }~") / 

[ 1 ,  if p _->2. 

It follows that a (p, n, m) > 1 implies (2.4) and hence the conclusion of Corollary 

(2.6). We conclude the proof by noting that 

b(p, n, m) = [] 

~(  ,=~, g,Y, ll) - xFn ~2({Y,}7) 

The famous Dvoretzky's theorem was originally proved in [2], and many of its 

diverse and important applications were developed in [5]. We shall now show 

that the "proper"  choice of the sequence {yj}j%, in Corollary 2.6 proves this 

theorem with a sharper lower bound for N: 

THEOREM 2.8. There exists a constant c > 0 such that for any 1 > e > 0 and 

integer n > 1, if N is an integer satisfying N >= exp(cne-2), then any N-  

dimensional Banach space Y contains an n-dimensional subspace Y. for which 

d(Y.,l~)<-_(l + e)/(1-e) .  

PROOF. By the Dvoretzky-Rogers '  theorem [3], if Y is an N-dimensional 

Banach space, there exists an inner product norm on Y denoted by I1" 112 and 
there is a sequence {y~}~=l C Y such that: 

(I) 1 = l[ Y, 112 = II y, IIY = II y, IIY. (1 -< i --< N);  
(II) IIV,., try, II = x/1 + m ( m  1)/N(ET'=I t]) 1'2 for every 1 < m < N and for all 

real numbers {tj}7'; 

(III) there exists an orthonormal basis {u~}~Z~ such that y~ = Y.~.=~ yk.~u, where 

k - I  

2 < k ~ r l  y ~.~ = 1 - y k,k = for all 1 -<_ k < N. 
= 
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For such a choice of {y~}~=, we obtain from (II) that 

and by (I) 

e2({yj}?)- < X / I+  m(m - 1)/N<= X/1 + mS~N, 

E g~y~ = E  mjaxlgj l l ly  j ~ . ~  > = c ~ V ~ m  

where cl is a positive constant. Substituting these inequalities in Corollaary 2.6, 

we obtain that if 

cl x/-fog m -  %/1 + m2/NV~n> 0 

then 

d (Yn, l;') < c, X/log m + V~n X/1 + m ~/N 
c~ X/log m - V'-n X/1 + mZ/N" 

The r.h.s, of the last inequality is smaller than (1 + e ) / ( 1 -  e) if 

e ~ => n(1 + m2/N)/c~ log m. 

Picking m = [N 1/2] it is easy to see that there exists a universal constant c > 0 for 

which the last inequality is satisfied provided log n >= cne-2. [] 

The above proof can be generalized to yield the general Dvoretzky's theorem 

about arbitrary convex bodies in R N which in our formulation states: 

THEOREM 2.9. Given any 0 < e < 1 and integer n, there exists an integer 
N = N(e, n), so that i fB is any convex body in R N with non-empty interior, and E 

is the ellipsoid of maximal volume contained in B, and if the origin of R N is chosen 

to be the center of E, then there exists A > 0 and an n-dimensional subspace H of 
R N for which 

m. A(E n H ) C _ B  n H  C_A \ l - e /  

The proof of this theorem is carried out on similar lines. One needs to replace 

the norm of the Banach space Y by the Minkowsky functional p ( . )  associated 

with the convex set B, and to verify that a suitable Dvoretzky-Rogers '  lemma 

can be formulated for B, that is, for the space (R N, p( .  )) which replaces Y. We 

leave the details to the interested reader. 
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REMARK. The lower bound for N, exp(cne-2), of Theorem 2.8 above is an 
improvement on the one obtained in [5] which, by using e-nets to cover the unit 
sphere of l~ and the isoperimetric inequality, gives the lower bound 

N > exp (cne-21og (2 + 1) ) .  

Using Theorem 1.1 and 2.3, we can derive some inequalities which generalize 
Theorem 2.5, but, of course, these cannot be quite as sharp when applied for the 
special case which was considered there. 

As before, denote by {g~.j} (l<=i<=n, l<=j<=m), {h,}~=l, {gi}J"--1 and g, 
independent sets of orthonormal Gaussian r.v.s. 

et m THEOREM 2.10. Let {x ~}~=1 and {yj}j=l be finite sets of points in Banach spaces 
E* and F, respectively, where E* is the dual space to E. Let 

G = ~ 2 g,.,x * Q y, 
i=1 i = l  

be the Gaussian operator from E to F. If 

X =  ~in (/=~ Ix ~;(x)[2)'": [ I,=~ giyjl-e~({y,}?)(~ h~)':2] , 

Y = min ]] G(x)tl + s2({x *};')eg({y,}7') I g I, 
Ilxll=l 

* n  E m z = II a II- e=({x, },) -,({y,}, )l g t, 

W = e,({x*};)1,=~ giyi[I + e2({y,}?)I,=~ h,x* 1, 

then for all real scalars )t 

P(X>=A)<=P(Y>=A) and P(Z>=A)<=P(W>=A). 

PROOF. Let g = {(x*(x),. . . ,x*(x)); x E E, IIx II = l I c  R" and 

{9 = { (y  * ( y l ) ,  �9 �9 �9  y *(y,,,  ) ) ;  y *  E F*, II y *11 = 1} c R m. 

Now define X,,o and Z,,o as in Theorem 2.3. Inequalities (I) and (II) of Theorem 
2.3 imply by Theorem 1.1 that 

P(minmaxX~.o~A)< P(minmax Z~,o>A) 

and 
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But clearly, 

s i n  max X,.o _-> X, s i n  max Z,,e = Y, 
e 0 e 0 

from which the conclusion follows. 

COROLLARY 2.11. If f(t) is increasing in 
and Eft(Z))  <= Eft(W)). 

Isr. J. Math. 

max Z,.0 --> Z and max X,,o --< W, 
e,o e,o 

[] 

(-oo, oo), then E f t ( X ) )  < E f t ( Y ) )  

where 

REMARKS. (a) In particular, taking f ( t)= t, and E = l" 2, we obtain from 

Corollary 2.11 an inequality similar to inequality (2.3) of Theorem 2.5 (which, of 

course, is not quite as sharp). However,  we note Dvoretzky's theorem can be 

similarly deduced from this weaker inequality as well. 

(b) In Theorem 2.3, the sets ~ and O were both finite, whereas in Theorem 

2.10 they are not. This does not cause any real difficulty in the proof of Theorem 

2.10, because we can always approximate ~ and O by their finite subsets. 

Recall now the notions of type and cotype. The type p (cotype q) on m 

vectors of a Banach space Y, denoted by T~)(Y) (resp., c~)(Y)), is the least 

constant a such that for every subset {yi}?=l C Y 

( ) ( ( ) (2 In)) 
The type p (cotype q)  constant of Y is 

r~P'(g)=sup, r~>(g)  (resp., c(q'(Y)=sup, c~)(Y)). 

To make sense we must have 1 _-_N p -- 2 _-< q _-< ~. We shall next show that if Y has 

cotype q, dim Y >-_ m, where m is "big" compared to n q/z, then Y contains an 

n-dimensional subspace "close" to l~. This result can be found in [5] as well, but 

the numerical estimate seems to be new. 

COROLLARY 2.12. If dim Y = m, where 2c(ql(Y)m-1/%o, < 1, then Ycontains 
an n-dimensional subspace Z for which 

d (Z, l~) _-< (1 + 2c co>( Y)m -'%,. )/(1 - 2c co~( Y)m-~'%Jo ) 
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PROOF. Let B2 be the ellipsoid of maximal volume contained in the unit ball 

of Y. Without loss of generality we may assume that B2 = {(t~)m=~; ~t~__-- < 1}. By 

[7], there exists a sequence 

{y,}L1 Z Y, m < s < m(m + 1) 

and positive scalars hr such that 

(1) Ily, llY --Ily, ll2-- 1 for all l<=r<=s, 
(2) E~ h, = m, 

(3) y = ELiA,(yr, y)y, for all vectors y. 

Since II. I1~, = II. 112 it follows that 

e2(/X/~y~}:=~)=sup{(,=~ h , (y , ,y)  2 ;[[Yll=l, yeY* 

= sup{ily 112; Ily II-- 1, y ~ Y*} _-__ 1, 

so using the inequality 2C~)(Y)=> C(2)(Y) [9], together with C~)(Y)m"2-"q>= 
C~)(Y), we obtain that 

E X,/~g,y, => (C(2)(Y)) -1 h, _-> 2C~'(Y))- '  
r = l  

_-_ m TM/2 C~)(Y) _--- m TM/2 C ~ ( Y ) ,  

hence if we replace in Corollary 2.6 the sequence {yj} by {N/A-,y,}~=t the required 

estimate will follow. 
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