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ABSTRACT

We present a generalization of Slepian’s lemma and Fernique’s theorem. We
show how these can be easily applied to give a new proof, with improved
estimates, of Dvoretzky’s theorem on the existence of “almost” spherical
sections for arbitrary convex bodies in R", while avoiding the isoperimetric
inequality.

Introduction

Let (O, F, P) be a probability space and {X;;} (1=i=n, 1=j=m) be a
doubly indexed sequence of real valued centered Gaussian r.v.s. on (), F, P).

We are interested in comparing PN, UL X, z ;) and
E (min; max; X;;) with the respective analogous forms obtained from another
sequence {Y;;} of real valued centered Gaussian r.v.s. The main results in this
direction are Theorems 1.1 and 1.4, which extend the well-known Slepian’s
lemma [8] and Fernique’s Theorem [4] (see also [6]).

We shall show that Theorem 1.4 can be applied, for example, to give a new
proof of the famous Dvoretzky’s theorem [2] on the existence of “almost”
spherical sections for arbitrary convex bodies in R", as well as some new
estimates which are useful in the context of the study of the local structure of
finite-dimensional Banach spaces.

§1. Some inequalities for Gaussian processes

The next theorem is an extension of Slepian’s lemma [8], [6].

' Supported by Technion V.P.R. grant #100-526, and fund for the promotion of research at the
Technion #100-559.
Received November 28, 1983

265



266 Y. GORDON Isr. J. Math.

TueoreM 1.1. Let {X,;} and {Y,;} (1=i=n, 1=j=m) be two sequences of
real valued centered Gaussian r.v.s. satisfying:

(1) EXi)=E(Y:) forall 1=i=n 1=j=m,

() E(X,; X )=E(Y,;Yx) forall 1=i=n1=sjk=m,

3) E(X, X, )Z E(Y,;Yy) foralli#L 1=2i, 1=n 1=, k=m.
Then,

[\

P(é ’L':JI [X,;,-é)\,;,-]) P( ﬁ U [Yi,igALi])

i=1  j=1
for all real scalars A;;.

The proof of Theorem 1.1 will use the following simple lemma whose proof is
omitted (A° denotes the complement of the set A).

LemMA 12, Let A;; (1Si=n, 1=j=m) be subsets of a given set A. Let
Bo=Aiand B;=A5N---NA;NAu forall 1=i=n, 1=j<m. Then,
m-1

m-—1
Ai=U U Bi,NB,,N---NB,;).
=0

in=0

3

n

U
-

g

REMARK. Note that the sets B, ;N --- N B,;, are distinct for distinct vectors

Gisevnsn)
ProoF OF THEOREM 1.1. We shall adopt the following notation: A vector
X ={X1,...,%m) in R™ will also be denoted by
X = (xl.l, e Xtmy X205 e o3 X2my ey Xnlyoonsy x,”,,)

where Xij = X(i-1)m+j (1 =i=s n, 1 §] = m)
Given any positive definite matrix I' = (y,3), 1= a, B = nm, let Z =(Z,) be
the centered Gaussian variable determined by I" with density function

8T =@m)™ | explite,2)- 40w, w)dx.

It is very easy to see that if a# 8 then dg/dy., = 3°g/dz.0z,. Notice that if
a=@{—-1m+j,B=(I-1)m+k (1=il=n1=j k =m) then by our nota-
tion

Yap = E(ZaZs) = E(ZiZx).
Let now A;; =[Z; = A;]. We have by Lemma 1.2 and the remark which
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followed that

m m—1 m

o(z;r)=P( n U Ai,,-) ’02; Lw_n L..,-, g(z)dz

j=1

where for 12i=n0=j=m~-1

L f(z)dzidziz+ dzim = j J- s f f(z)dzim * -+ dz;2dziy
0 Aip S —®
! 3
m—1

for any function f(z.4,...,z.=) and

j f(z )dZi,le.',z' dzim = f Yl f i'if [ e J f(Z )dZi,m <o dziadzig.
By; —o = JAjjer S -

[
m—j—1

By differentiating Q with respect to y., we obtain that

aQ m—1 m—IJ* I 82 z
= zD=Y... 9°g(z)
( > ) 2 j,,2=0 B, 5, azu azﬁ dZ.

0Yasp =)

We shall compute [z, - [ 8.i.(0°8(2)/02.025)dz for all a# B. There are two
possibilities:

@ a=@{(-1m+k, B=({(—-1m+1 where l=k<l=m,1=i=n,

) a=(@(-1)m+k B=(o—1)m+1I where 1=k, I=m, 1=i<i,=n.
In case (a), without loss of generality we take z, = z1,,—1 and zz =z, (i.€.,
i=1,k=m-—1, l=m), then

3°g(z)
j dzii- - dzim
By,

0Z1,m-10Z1,m
Al‘l Al"l Iao Jrou fw 62 z
p—i LR . o dz m ‘5. dz
[N’
m-—j—1 P

and we see that this is equal to zero if j; <m — 1 because the first integral with
respect to zy, is

® 2
f 8@ 4y

0Z1m-1 321,m
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But when j,=m —1, then

2
j _3_815)_‘12],1. o dzi
By,

, 0Z1m-10Z1,m

= _f_:". . .I_:‘"_zg(z)

Hence, it follows that in case (a), dQ/dy.s =0.
In case (b), without loss of generality we take z, = z,,» and zg = z,,,. Then,
when either j; or j, is smaller than m — 1, we obtain as above that

2
[ f ig_(i)_ dzy1+ dzymdzay* dZom =0.
Byy, By,

321,,,.322,,,,

Zym-1"Am—1 dzl,m_z e dzl,l.

Z1m = m

However, if j, =j.=m —1, then

2 ; ! )
J. I 9 z dzl,l bl dzl,md22,1 s de_m
B2,m-1 JBim-1

azl.maZZ,m

Aa AMm-o1 [ A A=t [® 2
O N e S
—w — Ay J—® —w Azm 821,,,.822,,,.

Aa Aimor Ao Azm—1
L L L ...L 2(z)
0

Hence, it foliows that in case (b), 3Q/dV.p = 0.
Let now I'y and I'y be the covariance matrices of

il

“1m " m dzym-1* d221d2y 1 - A2y,
Z2m=A2,m

v

X=(Xl,l,...,X1,,,.,...,Xn,1,...,X,.,m) and Y=(Yl,l,...,Yl,m,...,Yn,l,...,Y,‘,,,.).

By a standard approximation procedure we may assume that I'x and I'y are both
positive definite.

For0=6=1,1etI'(6)=0Tx+(1—-0)y, and let I'x = (r.z) and T'y = (5,.)
(1= a, B = nm). By assumption (1) of the theorem r.,, = s.. for all @, therefore

d d
49 (z;1(0)) = P a—y?; (Z3T) |rerio(Fas — Sup).

By assumptions (2) and (3) of the theorem r, g = 5. in case (a), and r,p = s, in
case (b), hence dQ/df®=0. Therefore, Q(Z;T(1))= Q(Z;I(0), ie.,
Q(X;I'x)= Q(Y;Ty), completing the proof. a

CoROLLARY 1.3. Letg; (1=i=n,1=j=m)be increasing functions defined
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on (—x,»). Then, under the assumptions of Theorem 1.1

E(min max £,06)) 2 B min max 8a(%2)
PrROOF. Let
X = min max g,;(X.;), Y =minmaxg,;(Y),
and define g;;j(A) on (—,®) by setting gi/(A) =sup{t; g,;(t)=< A}. Then,
(XzA1= N U 8X)2A1= N U %2500

therefore, by Theorem 1.1,

) 1%, 2 g00)))

qu

P(X;A)=P(r:1

§P<é LiJ[ .,—g.,(A)])

=P(YZ))
from whence it follows that E(X)= E(Y). O

Theorem 1.4 which follows is an extension of Fernique’s theorem [4], and will
prove to be the essential ingredient in developing the results of §2.

THEOREM 1.4. Let X;; and Yi; (1=i=n,1=j=m) be real valued centered
Gaussian r.v.s which satisfy the following conditions:

i) E(|X;—Xu)SE(Y;—Yul) forall 1si=n1=j, k=m,

(i) E(X,; —~XuPDZE(Yy—Yul[) foralliZL1=il=n1=jk=m
Then,

E(mm max X.,) E(mm max Y,,) .
1=i=n 1SjEm 1=i=n lzjs=m

PrOOF. We shall continue to use the notation of Theorem 1.1, namely, if
a=(—1ym+jfor1=i=n1=j=m,the a-th coordinate x, of a vector x in
R™ is also denoted by x;;. Thus, X, is identified with X;.

For every 1=a, B=nm, let r.p = E(X.X}), Sap = E(Y.Ys). For 06 =1,
define p.(8)=0r.z +(1— 0)s.s. Then the matrix ['(0)= (pop(0))ap-1 is the
covariance matrix of
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X(O) = (X]_](O), seny X])m (0), Xz,l(o), ey Xz,m (0), cay Xml(O), ey Xn,m (0))

where X;;(0)=0""X,; +(1-60)"Y,;. We may assume, of course, that the
sequence {X,} is independent of the sequence {Y;} so that E(X,;Y,.) =0 for all
1=i I=n,1=j, k =m. Also, by standard approximation procedure we may
also assume that the matrices I'(0) and I'(1) are both positive definite, and
therefore I'(8) is positive definite for all 9. Let

h(6)= E(mm max X,,(()))
sisn 1=jsm
and let g(@) be the density function of X (6). We shall prove that conditions (i)
and (ii) of the theorem imply that h'(8) =0 for all 0 = 6 = 1; this will show that
h(1)= h(0).
We will list the following well-known identities:

M) 8 (@)=Cry | explite 2) -0} )b,
2) h(8)= Lm (miin max x.~_,-) 8 (x)dx,
3) h'(0)= Lm (mm max x,,) —g{;—gﬁ dx,

(4) d (;ox — _(21'.)*’"" ij [2 z yayﬂ—e—-d—)] exp{i(x,y)—%(F(O)Y,Y)}dy,

6  ZEL_Gaym [y explitn )~ KT(O) yhay;

0X,0%g
therefore
(6) 886!x!=l = de‘,é!e!.azgo!x!
a6 2 af=1 dae Bx,,axg >
oy 1 3 dpags(0) ( . )82g‘,!x!
h (0) - 2 a,ﬂ2=l R miln miax Xij Bx,,ax,; dx
(7) 1 nm . 62 o (%
=3 ,..pz=1 (Fap — Sag) an (m}n max x.-,,-) _g_g—)ax,, 2%, dx

Denote the integral in (7) by L., (note that we mixed the two notations for the
coordinates of x in the integrand of I,,). We shall compute I, for all values of
a, B, 1 =a, B =nm. It suffices to consider three special cases: (a) a =8 =1,
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(b)a=1,8=2,and(c)a =1, B = m + 1, from which I, can be determined for
all a, B.
We shall first simplify I, for all B.

Computation of I p: Let B =(lo—1)m +jowhere 1= ir=n,1=jo=m. Letus
denote

fxx: =dxidx; * dxa—1dXos1** * AXpm,

and

dx
dx.dxs

= dx1 v dxa-quaﬂ st de—lde+1 e dx,.,,.

for a # B.

Forall 1=sisn 1=j=m, let

u; = min max x,; and u; = max X.
1=l=n 1=j=m 1=k=m

1#i k#j

Then

glllgnn max x,; = min{max(x1,, U1,), U1}

There are six cases to consider:

(@) 4 = U1, = x4, then u, = min; max;x;; ;

(b) U1 = u) = x;,, then u, = min; max; x;; ;

(©) ui=x11= wy,, then u, = min; max; x;; ;

(d) xi1=u,=uy,, then u; = min; max;x;; ;

() ui1=x,1=u, then x,; = min; max;x;; ;

() x11= ui) = u,, then u,; = min; max;x;;.

Let B8 =(ip—1)m + j,, then integrating over the domains (a)+ (c)+ (d) we
obtain

) 3’8 (x " g (x dx
j <m1n max x,;,) g (x) dx = u O g(x) dxy ) 7—
@+ \ 0%1,10%;, 4, Sy o 0X110% 4 dx,

=0

hence
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Ls= j
(b)+(e)+(f)

=,[4”<u| (u J:. —&&)—dx,, j xn—u—den

1 a‘x”ax'om ox ”a ig.Jo

L 2
+u,,1 I_ 9 gs(x) dxl,]) dx

I~ ax“ax ip.fo dx1_1
j dx_
LIRE=L I ax'olo X 1=u) dxl 1
lll a
+J [ —u,, 8ex) _j —ﬁldnJ-QL
RELH ax‘olo Xy, 1=U ax"o'l'o X =u uy axio'io dx“
dx
] &
LIREL 1 ax'olu xj)=uy) dxl-l

u1=u) U axlola dxll

Computation of I,;: Take in (8) B =1, then iy =jo=1, so

- _dx dx
Il‘l B Iﬂl,|§u| go (x) L dXM + ful.léul g" (x) LT dxl.l
=B-A
where
dx dx
A - Uy ZSu g9 (X) AT dxll ’ B - Uy 1=u g@(x) FLrmu dxll ’

To compute B, define for each k, 2=k =m

B.={x €R™;xi, = ul}}, where ul)= max X,

l;‘]k

then on By, uy1 = X1, and the condition u,, = u, implies on B, u DS Xk = Uy,
hence

dx
xp1=x k=¢ d§) dx“dxl,k '

B=3 [ (58w

U=

Now we compute A. For all 1=, I<n, i#]l let

u" = min Max X.x.
1=r=n

r#il
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Let

. def
C= {x € R"™; max x,; = min max x.; = ut, 1=23,....n
J =r=n J

r#l

Then R™ = U/., G and distinct G’s have disjoint interiors. Moreover, each G

is also the union of sets which have pairwise disjoint interiors, namely,
m
C] = Uk=1 B“( where

B.=CnN {x ER";x, 2 max x,‘,} .
=f=Em
j*k

Since R™ =U;_, U}, B, we obtain

A - ZZ kzl J’Bl‘kn(u|_|5u|} g" (X)

But on By, N{u,, = u,} we have u, = x,,, hence x;x = u,,, also

dx
X =u dle .

def .
X Zmax x; = Wy and  x, = min max x,; = u
I=j=m 2sr=n i

jEk r#l

LI

Thus we have on By N{u, = u,} that max{u,;, s} =xu =u"' (and this
inequality in fact defines the set By, N {u,, = u,}), therefore denoting max{a, b}
by a v b we obtain

B n m ull dx
A - 122;1 fu,‘,vu,'k§u"' <J‘ulvlvuu‘ ge(X) x”=xg_g=§d§) dxl.ldxf.k ’

and from these identities we obtain

I"‘=i,[ug{;§u. ( . 8(x)

Q
"Li

m m uld dx
IZZkZl J‘ul',vu,‘kéu"' (J'u”vu,_k gﬂ (x) x|'1=x,_k=§d§) dxl,ldxl,k )

In the same way we can determine I,, for each 1=a =nm; setting
a=({—-1m+j(=i=n, 1=j=m), we obtain

“ dx
O=u, ( I uf Bo(x) bumsa=s d‘f) dx; jdx; x

(9) n m i
“ : dx
— 2:1 ,‘ZI jul_.ivu,'kgu'-'l < ‘[‘” v 8o (x) X=Xk =§ df) dx.-,;dx,‘k. .

dx
dx,1dx;

xXp =X =¢ dg)
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Computation of I, ,: If we take in (8) i =1, jo=2 we get thatfora =1, =2

L= —J ( den) dx

%1, dxia dx, dx,;’

Now,
= — 1)
U= max X, ; = X2V Uiz
2=f=m

There are two cases to consider here:

(1) ul=x,,. Then u, = u, implies x,, = u,, and the condition u;; = x;, = u,
implies x,, = x,, = u,. Thatis: u}=x,=x, S u,.

(2) u)= x,,. Then u,, = u, implies u{} = u,, and the condition u,, < x,,: = u,
implies u3=x, = u,. Thatis: xS u{l=x, = u.

Therefore, changing the order of integration in I,, we obtain

qu—J {JI JIlMdXIdell
wih=u @ Jul) X2
0]
“2 9gy (x) ] dx
f f %5 2 dxndx“ dx,dx,,

dx
X1 1=%12=¢ dg) dx,_ldez '

_Lszgu. Uu:i; & ()

This implies thatforany 1 = a, B = nm,ifa =(i—1)m+jand B =(i —1)m + k,
where 1=i=n and 1 =j# k = m, then

(10) Ro= =, ([ 200

dx
Xi T ik = fdg) dx;dx..

Computation of I, ..,: By equation (8)

_ 1 ags(x) ) dx
D .L”éu, ([u” X2, dx, dx,;’

Recall that u, =min{u'? max{x,,, u,,}}, therefore there are six cases to
consider here:

(@) u"”?=uyy = x,,, here u,=u'?;
(b) u'?=x,, = u,,, here u,=u'?
(©) x2u=u"?=u,,, here uy=u'?
(d) ui=u'?=x,,, here uy=u'?
(€) U =x,,=u'? here u, = xu;
) x21=us =u'’, here uy = us.
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We obtain therefore

_ » ull 3&0!*‘! ) dx
Limst Ll.lfu"zfuz.n juz] L” 0X2,1 dx,.dx,, dx . dxz,
uy, (u'? ago‘x’ ) dx
er 1 Su'su,, J 12 4[41.1 1) 2% dxl,ldx21 dxlv‘dxz-l
2 ) dx
‘ X2, : dx, dx,

“ o Se!x! ) dx
jnvuu(u J' , dx“dXZl dxndle

- 21 gy (x) ) dx
J"1,|§“z,1<u (J' J 5x21 dx”dXZl dx“dle'

Changing the order of integration inside the first three integrals, we see that their
sum s zero since

J () 4 _g

dx2,

Hence

dx
Il,m+l f . 12 (f gO(x) xpy=u'? dx“) dx”dX21

uy vy, ul2 X
_ f [ J f 90 4o,
up Vg su'?

My VU | a X3¢

+J. J deZﬂlx‘]] dx

X2, dx, 1dx,,
‘f 2t (f g (x)

We have to consider the cases u>1 = u;,; and u,; = u,,. These cases lead to the
following computation:

1,2
“ dx
L +1—J (J 9(x) = ‘~2dx11)
” g Suy =ut? it 8 = ! dxl,lde]

wl2 dx
+J up =u'? (J ge(x) x2',=u'-2dx1,1) dxi1dx,,

dx
AT dx., l) dx;, 1dJC21 ’
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f“|1<u21=u {J:, (86 (x) | x0=ur2 = 86 (%) | x31=us, ] X1
+f [80 () | xz,=u12 = 80 () | s, ]dx}ﬁ—

Lz,q, (sl {f J“v"z "?‘go‘(‘ﬁ dx;,dx,
+ f (8 (x)
o ([0

=Ju Su,,sub (j ga(x) ST gdf) dxlldeI

“ dx
+ juuéu“éu‘-z ([u“ go (x) T €d§) Xm ldel
_ ut? dx
- fu. vig y=ul? (fuuvu“ 8e (x) Ha=xza=é g) dX1 1dX21
From this we obtain for every 1=a, B=nm, if a=(i—1)m+j and B =
(I-1)m +k, where 1=i#l=n, 1=j, k =m, that

From equation (7)

dx
le"‘n]dx“} dx, dXz1

xp =u' — &e (x)

dx
x21= “zndxll) dx dx21

dx
%=Xk =¢ df) dxl'-l'dx"k '

do 22(’“ Sas )

1 m
+§2 Z (7 —m+ii-vm+k = Sa-nm+it-nm+- )T (-1ym+iG-1ym +k

1 m
+5 Z Z (r(i—l)m+j.(l—l)m+k— s(i—l)m+[.(l—l)m+k)I(i—1)m+i.(l-l)m+k
2.8 =njk=1

= 1)+ (ID) + (II) + (IV)

where

m

n
(I) = 21 '(l —Dm+jii-Dm+j = S (i—1)m+j(i— 1)m+’) 2 I(‘)§ (Ju 8o

dx
X =Xk = §d€) dx.,dx.k

NI'—‘
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m
2(’(- 4= 1m+i ~ S G hm +i = ym-+)

id
n m uh dx
2121 -[‘Lk\’“i.iéui'l " & X =xi,=§ § dx,,dx,k
i

-

dx
i =ik = §d§> dx;dx;,’

(IV)"_ Z Z (r("‘l)"lﬂ'v(’—l)m«‘-k_ s(i—l)m+]‘,(l—1)m+k)
2= =n jk=1

i#l

u! dx
X ( ( r = d )
J.u cuesut Y D v, 8o i =Xk =€ § dx,,dx,k

But we can write (I) as

(I)=Z

Z (r(l Vm +j(i- l)m*}+’(l Dm+k(i~Dm+k ™ s(x Dm+j(i—1)m+j

]#k
—S(.>1)m+k.(‘i—1)m+k)f ) j() 8o
u;_’,:éu,»

and since the respective integrals that appear in the sums (I) and (III) are the
same and non-negative, because g, =0, it follows that (I)+ (III) is =0 if the
coefficients are all =0, thatis,ifforalll=i=n,and 1 =j# k = m we have

=11=

dx
e v on

0= T(i—])m+i.(i—1)m+i+ T Dm+k(i-Dm+k — S(i—Dm+ji—Dm+j — Si—-Dm+k(i—1)m+k
- 2r(i—l)m+j,(i—1)m+k+ 2S(i—1)m+j,(i—1)m+k,

which is precisely inequality (i) of the assumption of the theorem.
Similarly, we can write (IT) as

m
(II) = ”‘Z Z (r(ifl)m+j,(if1)m+j+ T-Dym+k~Dm+k = Si—Dm+j(i~1)m+j
1=i,l=n jk=1

1#1

wlbd d
X
= S 1ymtk(i-m+k) (J L= d§) .
" " g vy sutt LYSEu Bl i dx‘ ldxlk

(IT) therefore contains the same integrals as (IV), and since g, = 0, (II) + (IV) will
be non-positive if all the respective coefficients are =0, that is, if for all
1=si#l=n1=jk=m
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0= - Ti-Dm+j(i-Dm+j F-tm+kd—1m+k T s(i—l)m+i.(i~l)m+j+ S-Dm+kd-1m+k
+ 2’(.’—1)m+i,(l~—l)m+k_ 25(i—1)m+,;(1~1)m+k,
which is exactly assumption (ii) of the theorem. Hence dh/df =0 for all 6,
implying in particular that h(0)= h(1), that is
E (min max X.,) =E (m_in max Y,;,') : a
i i t 1

ReMARK 1.5. Fernique’s theorem follows as a corollary of Theorem 1.4,
because this is exactly the case when n =1, so (ii) of Theorem 1.4 does not
appear, and thus from (i) alone (for n = 1) it follows that

E (max Xl‘,) =E (m,ax Ylvj) .
1

§2. Applications and Dvoretzky’s theorem

Let{g;} (1=i=n,1=j=<m), {h} and {g}" always denote independent sets
of orthonormal Gaussian r.v.s.

THEOREM 2.1. Let
€={e=(e1,62...,&)}CR" and O©={0=(6,,0,...,0,)}CR"

be compact subsets of points, and let
X,-,‘a = ” £ ”2 2 Oigi + 0() 2 Eih,' (Where 0() = max{” (7] ”2, (= @})
i=1 1

and

Y.o= 2:[ /Zl €0;gi;.

Then

E (min max Xw) =E (min max Ys‘o) =E (max max Y, 9) =E (max max X, ,) .
e€€ 68 t€EE 0€0 e€e€ 6EO ’ 3 ’

EE€¥ 0€0

Proor. For arbitrary ¢, € in &, and 6, 6 in ® we have that

m

E(|Y.o— Yes[) = (6, — £6,)

n
=1 /=1

=|eBHo 15+ 11615~ 2, £)(8, 6)
and
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E(1Xs = Xes )= 3, (le bty ~ 16+ 03 3, (o= &)

=l RHOE+1eEI61E—2]e 1] £ (o, 6)
+ 05|l [E+ 112 [k - 2(=, ),

hence

@.1) E(|Xeo = X:6)Z E(| Yoo~ Yes [))

if and only if

(2:2) 03[l I3+ 1€ |5 - 2(e, )] - 26, 0)[ ¢ bl € | — (e, 8)] 2 0.

But since || |L]|€ |.— (&,€) = 0 the Lh.s. of (2.2) is minimized when (6, §) = 63,
and then (2.2) is reduced to the inequality

Oillle o +ll€le—2l Ll £lk1Z0

which is obviously true for all ¢, § in &
By Fernique’s theorem, or Remark 1.5, it follows that

E (max max X£,9> =ZE (max max YE,,,> .
e€E€ 0€O tEE 6€0
It remains to show that
E ( min max Xs_o) =E (min max Ye,(;) ;
c€EE 0€0 eEE 0€O

this will follow from Theorem 1.4 if, in addition to inequality (2.1), we shall also
show that

E(I XE,O - .0

)= E(

Y.o~Y.;[) foralle €% andg,6€c0.

But, in fact, we have that
E(|Xeo=XesP)=lle 2, (6 = ) = E(| Yoo = Yus)
F=

and this completes the proof. O
We now illustrate the preceding theorem by an example:

ExampLE. Let & consist of all 2" vectors of the form (= 1,..., =1)in R", and
# consist of all 2™ vectors of the form (£1,..., £1)in R™ Let X,, and Y., be
as in Theorem 2.1. Then 6,="Vm and ||& |, = Vn for all £ €%, so
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E(maxmngz_,) =E(\/7z >lgl+Vm |hi|)
€ = =1

= \/%(m\ﬁwn\/?:): \/¥m<l+ \/g—)
and

E(meinmngs_o)=E(\/7zi§l[g,-l—\/ﬁi2|hil)= \/§lm<1—\/§),

therefore, by Theorem 2.1

and

RN R 2n \/n)
A = i — _
E (mem ,-=§1 i=§'1 s.g.,,‘ ) = - M (1 .
Of course, it is also obvious that for all ¢ € €

- 2
; Gigi,i' ) = \/_T;Ll m.

Using Corollary 1.3 and slightly modifying X., of Theorem 2.1, we obtain a
general useful inequality.

m

E(mjné'zﬁigi,i|)55(2

j=1

THEOREM 2.3. Let € CR", ® C R"™ be finite sets and

Xeo = “5 ”2 121 g + "0 ”2 21 ghi, Yeo= .21 ,Zl 0,8,

Zo=Yeot “8 ”2” 0 "2g (c€% 060€0),

where g is a standard normalized Gaussian variable independent of the g;.
If f.o(t) (s EE 0 €O, —0 <t <) are increasing functions, then

E (mjn max feo (Xe,o)) =E (mjn max feo (Zs,e))
=E (rrgl’x feo (ZE,O))

<E (nl%x fes (Xe,o)) .
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ProoF. We shall first verify the following inequalities:

(1) E(X.oX.:)=E(Z.oZ.;)forall e €%, 6,6 €0,

(1) E(X.sX:4)=< E(Z.sZ:;) for all £, €&, 6,6 €6.
Indeed, both sides of (I) are equal to | & [5(6, 6) + |  [5]|0 || 6 |l., and it is easy to
see that

E(Z.sZ:4)~ E(X.oXes) = |l L€ LN 01161~ 10 kI 6 [1(e, &)
=(6,0)[le L]~ (& &)]

but since (6, 6)=<||0|.} 6 [ and || & ||| | = (e, £), the above expression is greater
than or equal to

A A A T M C R I B A R O B

The validity of inequalities (I) and (II) implies that inequalities (1)~(3) of
Theorem 1.1 are valid as well, where X., replaces Y;; and Z,, replaces Xi;,
hence by Corollary 1.3 it follows that

E (mjn max feo(Zeo )) =zE (mjn max feo (Xe,,,)) .

The fact that E(X2,) = E(Y:) and E(X,6X:5) = E(Z.0Z:3) for all ¢, & € &,
8,6 € O, implies by Slepian’s lemma, which is a consequence of Theorem 1.1,
that

P ( U [Xoo 2 AS,(,]) > P( U [Zo = As,,,])
£,0 £,0
for all real scalars A.o, and as in Corollary 1.3 this proves that

E <rrlgx feo (XE,,,)) =E (nlzzx feo (Zs_a)> . O

RemARK 1. If we replace |0, by 6, in the definitions of X, and Z.,, then
the inequality of Theorem 2.3 remains the same.

REMARK 2. We note also that by varying the sets € and © in Theorems 2.1
and 2.2, many other interesting inequalities can be formed. One may take, for
example,

E={e¢€R;llel.=1} and O={(y*(),....y* O y*EY*[y*[=1}

where {y;}" is a fixed set of vectors in a Banach space Y'; we’ll show that by using
Theorem 2.1 this leads to a proof of Dvoretzky’s theorem.
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The right-hand side of the inequality in Theorem 2.1 refines an inequality of
Chevet [1], in that it replaces the constant V2 by 1, namely:

CoOROLLARY 2.4. Let {x;}i-1C X and {y;}j-iC Y be sets of points in given
Banach spaces X and Y, respectively. Let G = 2., 2~ g% Q y; be an element in
X Q Y, or equivalently an operator from X* to Y. Denote

itix,- ;it?=1} .
i=1 =1

82({x,‘};‘) = max {
Then,

E(|Gllxgv) = e{x}DE (

8 ") + ey INE([3 gx

).
ProoF. We apply Theorem 2.1 with
E={(x*(x),....,x*(x)); lx* =1, x* € X*}
and
O={(y (- y* o= ly*=1 y* € Y*}.

Then obviously

E (max max Y.;.,) E(|Glxsv)

eEE €

and

E (max max X, 9) = 82({X,}1)E

eEE

Zg.x, )

THEOREM 2.5. Let Y be a Banach space, {y:}i~: C Y, and let {e;};-, be the unit
vector basis of I3, Let G(w) = 2i-, Zj~ gj(w)e; Q y; be a random operator from 13
to Y. Then

E(
j=1

2 g,y,“ + ex{y;}i= I)E(

o) - owestnin = E (in 6@ =BG
2.3)

=

B (|3 ay]) + anestin

where

n+1

w,,=\/§r( 5

)/r(%') (0n =V and w,n ™7 — 1),
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PROOF. A simple computation shows that E(V!., g7) = w. and hence

o, = \/E(ig?) =

The right-hand side inequality follows immediately from Corollary 2.4 by
setting X = I3 and x; = e;, 50 £2({x;}7) =1 and E(||Zf gix: [|) = E(VZi-1 8)) = o,

Let € ={s €15 ¢ |o=1} and @ = {(y*(y1),--., y*()); Iy |=1, y* € Y*).
Then obviously in the notation of Theorem 2.1, 6, = &{y;}1),

m n n
i = — 2
S o] mip 3 o= - 3 w0,

E (mip max ¥.0) = £ gin 16601

m
max 'Zl g0 = ;

thus we obtain that

e€¥ ixll=1
and
5 (mig mag X.0) = B (|3 an] ) - esttvinsan
so the left-hand side of (2.3) follows from Theorem 2.1. O

COROLLARY 2.6. In the notation of Theorem 2.5, if
>, &Yi
j=1

then Y contains an n-dimensional subspace Y, such that

d(Y,,15)= E ( ’2 8iYi ) + w.e2{y; 1)
ns 12) = E ,21 gYill | — wa.e2({y; }1)

@.4) B( )~ anealiyl) >0

A

Vaeiiy))

E(| 3 an])+ Vaesiny
E ( ; &Y )
PrOOF. For each w €1}, let

g@)=max[G(w)x|=|G(v)| and f(w)=min|G(w)x]|.
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Obviously, 0= f(w)= g(w) and since

0<E(|5 8] - owestiniza= BN =B@=E (|5 80 ) + ot

it follows that there exists wo € () for which

E (“2 gi)’i“) — wn&2({y,}7)

fwo)/g(wo) Z2—/1' .
E 2 g,-yi") + wue({yi 1)
=
It follows now from the inequality
fl@)lx |k =[|Glwo)x | = glwo)lx.  (xE€L)

that if Y, = span{G(wo)x; x € I3}, then d(Y,, I7) = g(wo)/f(wo). O

It is well known that

m Up
E((EIg,»I") >=c,,(m)m”” where ¢,(m)— ¢, (>0)forall0< p <o,
= m

and

E (lrggx | g |) =c«(m)Viogm  where c.(m)—— c.(>0),

MOreover,

ci(m)= \/g .

COROLLARY 2.7. For any 1=p =, and integers n=m, if a(p,n,m)>1
then I} contains an n-dimensional subspace Y, such that d(Y,,13)= b(p, n, m),

where

@) a(p,n,m)=cy(m)mn”",

b(p,n,m)=(c,(m)+Vn/m)(c,(m)—Vn/m) if 1=p=2;
(i) a(p,n,m)=cy(m)m**n"",
b(p,n,m)=(c,(m)+n""m™"")/(c,(m)—n""m™) if 2=p <oo;

(iii) a(p,n,m)=ci(m)(logm)n~",

b(p,n,m) = (c.(m)Viogm+ \/;n)/(cw(m) Viog m—\/;n) if p=o.
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PrOOF. Let {y;}/~; be the unit vector basis of /. Then

m m 1p
B([San])=5((31sr) ) =ctmm™  it1sp<a,
=1 =

E(

In addition

and

,Zlg,-yill) =E(mlax |g,|) _e(m)Viogm  ifp=c.

m"P if1=p =2,
e{y}) = [
1, itp=2.

It follows that a(p, n, m)> 1 implies (2.4) and hence the conclusion of Corollary
(2.6). We conclude the proof by noting that

E ( i g;y;") +Vnedly )

j=1
E(

b(p,n,m)=—nl5 .
]_ZI gm'l) —Vhne{y,}7)

The famous Dvoretzky’s theorem was originally proved in [2], and many of its
diverse and important applications were developed in [S5]. We shall now show
that the “proper” choice of the sequence {y;};~, in Corollary 2.6 proves this
theorem with a sharper lower bound for N:

THEOREM 2.8. There exists a constant ¢ >0 such that for any 1> ¢ >0 and
integer n>1, if N is an integer satisfying N Zexp(cne°), then any N-
dimensional Banach space Y contains an n-dimensional subspace Y, for which
a(Y., IH=1+e)(1-¢).

Proor. By the Dvoretzky-Rogers’ theorem [3], if Y is an N-dimensional
Banach space, there exists an inner product norm on Y denoted by |- |, and
there is a sequence {y;}}-: C Y such that:

O 1=y f=lyly =lyl A=j=N);

1) |2 4y |2 V1I+ m(m - DINE- £7)” for every 1=m = N and for all
real numbers {4}1";

(IT) there exists an orthonormal basis {;}}, such that y, = =k, y..u;, where

k—1 k_l
> yh=1-ylus="%— forallISk=N.
=1
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For such a choice of {y;}/-; we obtain from (II) that

Ay I = VI+m(@m —1)/N=V1+m?N,

E(

where c; is a positive constant. Substituting these inequalities in Corollaary 2.6,
we obtain that if

and by (I)

'Zlgi)’iH)éE(max g ] ”y,.”>gc1\/'—]ogm

1=j=m

e Viogm—V1+m* INVn>0

then

¢, Viogm+VnV1+m’N
aViogm—VneV1i+m’ N’

d(Ya, 15)=

The r.h.s. of the last inequality is smaller than (1+ ¢)/(1—¢) if
e’z n(l1+m’/N)/cilogm.

Picking m =[N'"] it is easy to see that there exists a universal constant ¢ > 0 for
which the last inequality is satisfied provided log n = cne ™. O

The above proof can be generalized to yield the general Dvoretzky’s theorem
about arbitrary convex bodies in R™ which in our formulation states:

THEOREM 2.9. Given any 0<e <1 and integer n, there exists an integer
N = N(g, n), so that if B is any convex body in R" with non-empty interior, and E
is the ellipsoid of maximal volume contained in B, and if the origin of R" is chosen
to be the center of E, then there exists A >0 and an n-dimensional subspace H of
R" for which

1+e¢
1—-¢

A(EﬂH)gBﬂHg)«( )(EHH).

The proof of this theorem is carried out on similar lines. One needs to replace
the norm of the Banach space Y by the Minkowsky functional p(.) associated
with the convex set B, and to verify that a suitable Dvoretzky—Rogers’ lemma
can be formulated for B, that is, for the space (R", p(.)) which replaces Y. We
leave the details to the interested reader.
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ReMARK. The lower bound for N, exp(cne ), of Theorem 2.8 above is an
improvement on the one obtained in [5] which, by using &-nets to cover the unit
sphere of [; and the isoperimetric inequality, gives the lower bound

N > exp (cns Zlog (2 + 1))

Using Theorem 1.1 and 2.3, we can derive some inequalities which generalize
Theorem 2.5, but, of course, these cannot be quite as sharp when applied for the
special case which was considered there.

As before, denote by {g,} (1=i=n, 1sj=m), {h}-, {g} and g
independent sets of orthonormal Gaussian r.v.s.

THEOREM 2.10. Let {x%}{- and {y;}{~: be finite sets of points in Banach spaces
E* and F, respectively, where E* is the dual space to E. Let

2 8X T QY

||M:

be the Gaussian operator from E to F. If

x=pin( S iercor) [[S an]-eom ()],

12

Y= mlig |G X))+ ex({x ¥ )el{yi ¥ g ],

Z = |G~ eAl{x )ellyid) 8 1,

+ eo{y; 17

)

W= e({x 7}7) "’2 8iYi
then for all real scalars A
P(XZA)=P(Y=ZA) and P(ZzZA)=P(W=).
Proor. Let € ={(x%(x),...,x%x)); x€E, |x[|=1}CR" and
O ={(y*(y)---,y*(m)); y EF*, [ly*=1}CR™

Now define X., and Z., as in Theorem 2.3. Inequalities (I) and (II) of Theorem
2.3 imply by Theorem 1.1 that

4 (min max Xo = ,\) =P <min max Zeo = A)

and
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P (ngx Zeo = /\) =P (mz}x Xio 2 )t) .
But clearly,

min max X.0Z X, min max Zo=Y, max Z.s=27Z and max X.o =W,
& £ £, £,

from which the conclusion follows. 0

CoroLLARY 2.11. If f(t) is increasing in (—«,»), then E(f(X))= E(f(Y))
and E(f(Z))= E(f(W)).

REMARKS. (a) In particular, taking f(t)=¢ and E =1; we obtain from
Corollary 2.11 an inequality similar to inequality (2.3) of Theorem 2.5 (which, of
course, is not quite as sharp). However, we note Dvoretzky’s theorem can be
similarly deduced from this weaker inequality as well.

(b) In Theorem 2.3, the sets € and @ were both finite, whereas in Theorem
2.10 they are not. This does not cause any real difficulty in the proof of Theorem
2.10, because we can always approximate € and ® by their finite subsets.

Recall now the notions of type and cotype. The type p (cotype q) on m
vectors of a Banach space Y, denoted by T(Y) (resp., cP(Y)), is the least
constant a such that for every subset {y:}i.,C Y

Sor])
i=1

1/,

B[S erf)=e(Eit)" (rom. (Sir) "

The type p (cotype q) constant of Y is

T®(Y)=sup TE(Y) (resp., c“(Y)=sup ¢ Y)) .

To make sense we must have 1 = p =2 = g = . We shall next show that if Y has
cotype q, dim Y = m, where m is “big” compared to n? then Y contains an
n-dimensional subspace “close” to /3. This result can be found in [5] as well, but
the numerical estimate seems to be new.

CoROLLARY 2.12. If dim Y = m, where 2¢'(Y)m™"w, <1, then Y contains
an n-dimensional subspace Z for which

d(Z, l;) = (1 + 2C('i)( Y)m —I/qw'I )/(1 _ 2c(q)( Y)m—llqwn)

]

where
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Proor. Let B, be the ellipsoid of maximal volume contained in the unit ball
of Y. Without loss of generality we may assume that B, ={()i,; 2¢: =1}. By
(7], there exists a sequence

m(m +1)

{}’;}f=1 C Yv m é s 2 3

{IA

and positive scalars A, such that
M lyby =lylb=1forall 1=r=s5,
2 Zh=m,
3) y =221 A (y., ¥)y, for all vectors y.
Since || Iy =||.|. it follows that

etV b = sup {( 50097

=sup{llylb;lyl=1,y € Y*}=1,

so using the inequality 2CP(Y)= CP(Y) [9], together with C(Y)m'* ™" =
C(Y), we obtain that

E(I Zl VAgy.

hence if we replace in Corollary 2.6 the sequence {y;} by {VA,y,}-1 the required
estimate will follow.

1/2

Iyl=1yev]

172

) = (CO(Y))" (2 /\,) =Vm2CA(Y))"

= m" 2CP(Y)Z m"[2CY),
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